Sunday, September 21, 2008

Tests of Big Bang: The Light Elements

Tests of Big Bang: The Light Elements
NUCLEOSYNTHESIS IN THE EARLY UNIVERSE
The term nucleosynthesis refers to the formation of heavier elements, atomic nuclei with many protons and neutrons, from the fusion of lighter elements. The Big Bang theory predicts that the early universe was a very hot place. One second after the Big Bang, the temperature of the universe was roughly 10 billion degrees and was filled with a sea of neutrons, protons, electrons, anti-electrons (positrons), photons and neutrinos. As the universe cooled, the neutrons either decayed into protons and electrons or combined with protons to make deuterium (an isotope of hydrogen). During the first three minutes of the universe, most of the deuterium combined to make helium. Trace amounts of lithium were also produced at this time. This process of light element formation in the early universe is called “Big Bang nucleosynthesis” (BBN).
NUCLEOSYNTHESIS IN STARS
Elements heavier than lithium are all synthesized in stars. During the late stages ofstellar evolution, massive stars burn helium to carbon, oxygen, silicon, sulfur, and iron. Elements heavier than iron are produced in two ways: in the outer envelopes of super-giant stars and in the explosion of a supernovae. All carbon-based life on Earth is literally composed of stardust.

Tests of Big Bang: Expansion


Tests of Big Bang: Expansion
The Big Bang model was a natural outcome of Einstein's General Relativity as applied to a homogeneous universe. However, in 1917, the idea that the universe was expanding was thought to be absurd. So Einstein invented the cosmological constant as a term in his General Relativity theory that allowed for a static universe. In 1929, Edwin Hubble announced that his observations of galaxies outside our own Milky Way showed that they were systematically moving away from us with a speed that was proportional to their distance from us. The more distant the galaxy, the faster it was receding from us. The universe was expanding after all, just as General Relativity originally predicted! Hubble observed that the light from a given galaxy was shifted further toward the red end of the light spectrum the further that galaxy was from our galaxy.

Friday, September 19, 2008

The Cosmic Microwave Background


The Cosmic Microwave Background

After some period of time following the big bang, gravity condensed clumps of matter together. The clumps were gravitationally pulled towards other clumps and eventually formed galaxies. It is extremely difficult to model how this clumping may have occurred, but most models agree that it occurred faster than it should have. A possible explanation is that right after the big bang the Universe began a period of exaggerated outward expansion, with particles flying outward faster than the current speed of light. This explanation is known as inflation theory, and has widespread advocacy within the astrophysics community because it reconciles theory with observation. It should be noted, however, that inflation theory is not directly verifiable.

Big Bang Theory - Evidence for the Theory

Big Bang Theory - Evidence for the Theory
What are the major evidences which support the Big Bang theory?

  • First of all, we are reasonably certain that the universe had a beginning.
  • Second, galaxies appear to be moving away from us at speeds proportional to their distance. This is called "Hubble's Law," named after Edwin Hubble (1889-1953) who discovered this phenomenon in 1929. This observation supports the expansion of the universe and suggests that the universe was once compacted.
  • Third, if the universe was initially very, very hot as the Big Bang suggests, we should be able to find some remnant of this heat. In 1965, Radioastronomers Arno Penzias and Robert Wilson discovered a 2.725 degree Kelvin (-454.765 degree Fahrenheit, -270.425 degree Celsius) Cosmic Microwave Background radiation (CMB) which pervades the observable universe. This is thought to be the remnant which scientists were looking for. Penzias and Wilson shared in the 1978 Nobel Prize for Physics for their discovery.
  • Finally, the abundance of the "light elements" Hydrogen and Helium found in the observable universe are thought to support the Big Bang model of origins. 

 

Big Bang Theory - Common Misconceptions

Big Bang Theory - Common Misconceptions
There are many misconceptions surrounding the Big Bang theory. For example, we tend to imagine a giant explosion. Experts however say that there was no explosion; there was (and continues to be) an expansion. Rather than imagining a balloon popping and releasing its contents, imagine a balloon expanding: an infinitesimally small balloon expanding to the size of our current universe.
Another misconception is that we tend to image the singularity as a little fireball appearing somewhere in space. According to the many experts however, space didn't exist prior to the Big Bang. Back in the late '60s and early '70s, when men first walked upon the moon, "three British astrophysicists, Steven Hawking, George Ellis, and Roger Penrose turned their attention to the Theory of Relativity and its implications regarding our notions of time. In 1968 and 1970, they published papers in which they extended Einstein's Theory of General Relativity to include measurements of time and space. According to their calculations, time and space had a finite beginning that corresponded to the origin of matter and energy. The singularity didn't appear in space; rather, space began inside of the singularity. Prior to the singularity, nothing existed, not space, time, matter, or energy - nothing. So where and in what did the singularity appear if not in space? We don't know. We don't know where it came from, why it's here, or even where it is. All we really know is that we are inside of it and at one time it didn't exist and neither did we. 

Wednesday, September 17, 2008

The Large Hadron Collider (LHC)


The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator complex, intended to collide opposing beams of protons (one of several types of hadrons) with very high kinetic energy. Its main purpose is to explore the validity and limitations of the Standard Model, the current theoretical picture for particle physics. It is theorized that the collider will confirm the existence of the Higgs boson. This would supply a crucial missing link in the Standard Model and explain how other elementary particles acquire properties such as mass.

The Big Bang Model

According to the Big Bang model, the universe expanded from an extremely dense and hot state and continues to expand today. A common and useful analogy explains that space itself is expanding, carrying galaxies with it, like raisins in a rising loaf of bread. General relativistic cosmologies, however, do not actually ascribe any 'physicality' to space.